

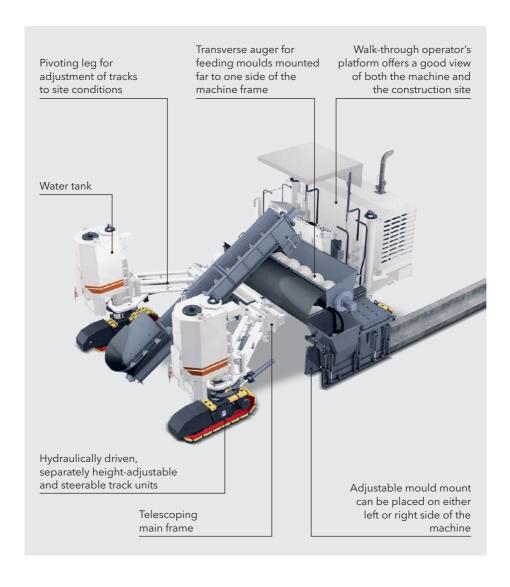
Concrete Slipform Paving Manual.

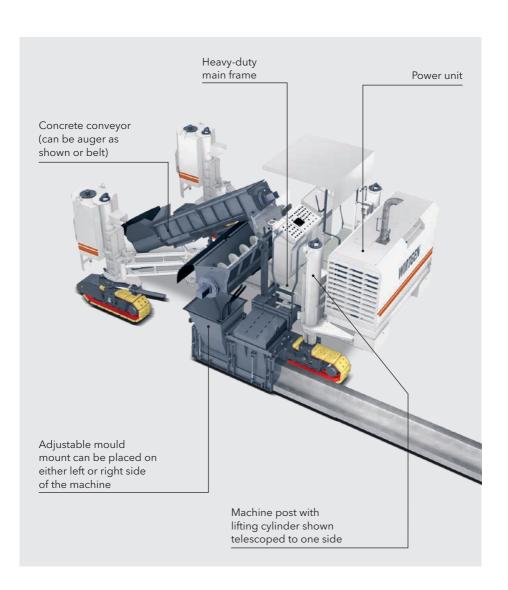
Curb, barrier, sidewalk and multipurpose applications

Content

1	Basic o	design of multipurpose slipform pavers	9
	1.1 PAVER COMPONENTS		10
	1.2	OPERATOR'S PLATFORM	12
	1.3	PAVER SETUP OPTIONS	14
2	Machi	nes and application examples	21
	2.1	MACHINE MODELS AND PERFORMANCE RANGES	22
	2.1.1	Slipform paver SP 15/SP 15i	22
	2.1.2	Slipform paver SP 25/SP 25i	23
	2.1.3	Slipform paver SP 61/SP 61i	24
	2.2	APPLICATION EXAMPLES	25
	2.2.1	Pouring curbs	25
	2.2.2	Pouring curb and gutter profiles	26
	2.2.3	Concrete safety barriers	27
	2.2.4	Pouring canals	28
	2.2.5	Paving slabs	29
	2.2.6	Wheel tracks	30
3	Site logistics		33
	3.1	BASIC PRINCIPLES	34
	3.2	INSTALLING STRINGLINE	38
4	Prepar	ration of the base	43
	4.1	THE BASE OF CONCRETE PROFILES	44
	4.2	PREPARING THE BASE WITH A TRIMMER	46
5	Concre	ete feeding	49
	5.1	BELT CONVEYOR	50
	5.2	AUGER CONVEYOR	52
	5.3	CROSS-FEEDING	54
	5.4	DUMPING THE CONCRETE MIX IN FRONT OF THE PAVER	56
	5.5	CHUTE AND HOPPER	57
	5.6	PUSH BAR	58
		·	

	6	Concrete slipforming/Offset moulds	
	6.1	OFFSET MOULD FUNCTION AND DESIGN	
6.2 OFFSET MOULD OPTIONS		OFFSET MOULD OPTIONS	
	6.3 ADDITIONAL FUNCTIONS 6.3.1 Combination offset mould		
	6.3.2	Curb depressor	
	6.3.3 Sideplates		
	6.3.4	Mould mounts	
	6.3.5	Height adjustment of the offset mould	
	6.3.6	Quick-change mould mounting system	
	6.4	BASIC CLASSIFICATION OF DIFFERENT TYPES OF OFFSET MOULDS	
	6.5	SPECIAL OFFSET MOULDS	
7	Concrete compaction		
	7.1	VIBRATOR FUNCTIONALITY	
	7.2	VIBRATOR DESIGNS	
	7.2.1	Straight vibrators	
	7.2.2	Curved vibrators	
	7.3	TYPES OF VIBRATOR OPERATION	
	7.3.1	Electric vibrators	
	7.3.2	Hydraulic vibrators	
	7.4	THEORETICAL EFFECTIVE VIBRATOR RADIUS	
	7.5	POSITIONING THE VIBRATORS	
	7.5.1	Offset applications	
	7.5.2	Slab paving	
	7.6	DETERMINING THE FREQUENCY	
8	Curing		
	8.1	WEATHER PROTECTION	
	8.1.1	Treatment with curing compounds	
	8.1.2	Curing blankets	
	8.1.3	Continuous moistening with water	


Content


	8.2	CUTTING JOINTS
	8.2.1	Contraction joints
	8.2.2	Expansion joints
	8.3	SEALING JOINTS
	8.4	CONCRETE TESTING METHODS
	8.4.1	Testing fresh concrete
	8.4.1.1	Tests to determine concrete consistency
	8.4.1.2	Determining the air content by means of the pressure gauge method
	8.4.2	Testing hardened concrete
9	Concre	te reinforcement
	9.1	BASICS OF CONCRETE REINFORCEMENT
	9.2	TYPES OF CONCRETE REINFORCEMENT
10	Machin	e operation
	10.1	REQUIREMENT OF A CONTROL SYSTEM
	10.2	MACHINE OPERATION BY MEANS OF STRINGLINE
	10.2.1	Level control
	10.2.2	Steering control
	10.2.3	Machine behaviour in relation to steering sensor position when driving straight ahead
	10.2.4	Machine behaviour without additional steering sensor when driving through outside radii
	10.2.5	Machine behaviour with additional steering sensor when driving through outside radii
	10.2.6	Machine behaviour when driving through inside radii
	10.3	MACHINE OPERATION BY MEANS OF A 3D SYSTEM
	10.3.1	Appraisal of the 3D control system
	10.3.2	GPS/GNSS/GALILEO/GLONASS and digital terrain model
	10.3.3	Optical measuring systems
	10.3.4	Functionality
	10.3.5	Benefits
	10.4	MACHINE OPERATION BY MEANS OF THE AUTOPILOT
	10.4.1	The most innovative 3D system

	10.4.2	Overview of the system	1!	
	10.4.3	The AutoPilot in detail	10	
11	Parameters influencing the paving process			
	11.1	CONCRETE MIX	10	
	11.2	PAVING PARAMETERS	1	
	11.3	MACHINE SETTINGS	1	
	11.4	INTERACTION OF MACHINE WEIGHT AND CONCRETE BUOYANCY	1	
	11.5	CHECKLIST FOR SETTING UP AN OFFSET PAVING SITE	1	
	11.6	CHECKLIST FOR SETTING UP AN INSET PAVING SITE	1	
12	Paving errors and error correction			
	12.1	ILLUSTRATED EXAMPLES AND RECOMMENDED CORRECTIVE ACTION	1	
13	Basics of design			
	13.1	CONCRETE REQUIREMENTS	1	
	13.1.1	Concrete requirements for offset paving	1	
	13.1.2	Concrete requirements for slab paving	1	
	13.2	PAVING CAPACITY	2	
	13.2.1	Paving capacity in offset paving	2	
	13.2.2	Paving capacity in slab paving	2	
	13.3	CONVEYING CAPACITY OF FEEDING EQUIPMENT	2	
	13.3.1	Conveying capacity of auger conveyor	2	
	13.3.2	Conveying capacity of belt conveyor	2	
14	Concrete science			
	14.1	COMPOSITION OF THE CONCRETE MIX	2	
	14.2	AGGREGATE AND GRADING CURVE	2	
	14.3	CONCRETE PROPERTIES	2	
	14.4	DISTINGUISHING CHARACTERISTICS	2	
	14.5	PRODUCTION IN THE CONCRETE PLANT	2	
	14.6	CAUSES OF POOR CONCRETE QUALITY		
15	Bibliog	raphy and image credits	2	

1 Basic design of multipurpose slipform pavers

1.1 PAVER COMPONENTS

2 Machines and application examples

2.1 MACHINE MODELS AND PERFORMANCE RANGES

2.1.1 Slipform paver SP 15/SP 15i

This slipform paver from WIRTGEN is suitable for curb, curb and gutter, barrier, sidewalk and other offset applications. It can be modified quickly on site to pour from either side.

The machine's compact design ensures ease of transport.

	Slipform paver SP 15	Slipform paver SP 15i	
Paving width*	up to 1.8 m	1/5'11" inset	
Max. offset height	1,300 mm	/4'3" offset	
Engine rating	92 kW/123 HP/125 PS	95 kW/127 HP/129 PS	
Operating weight **	9.8-13.0 t/21.600-28.500 lbs		
Number of tracks		3	
Travel drive	hydraulic/tracks		
Offset mould	у	es	

^{* =} Please consult factory for special paving widths and options

^{** =} Weights depend on machine configuration and working width

2.1.2 Slipform paver SP 25/SP 25i

The SP 25/SP 25i is also used mainly for offset applications. Moulds can be mounted on the left or right side of the machine. When pouring offset, the standard three-tracked machine is capable of placing concrete slabs at widths of up to 1.80 m (5′11″), while the four-tracked model can pave at widths of up to 2.50 m (8′2″). The machine's maximum paving width

when paving inset is 2.50 m (8'2") - or 3.50 m (11'6") when used with a special adapter. Customized modifications additionally permit to pour a multitude of special applications or widths.

	Slipform paver SP 25	Slipform paver SP 25i
Paving width*	up to 3.5 m/11′6″ inset	
Max. offset height	2,000 mm/6′7″ offset	
Engine rating	118 kW/158 HP/160 PS	115 kW/154 HP/156 PS
Operating weight**	13.0-20.0 t/28,700-44,000 lbs	
Number of tracks	3 (optional 4)	
Travel drive	hydraulic/tracks	
Offset mould	у	es

^{* =} Please consult factory for special paving widths and options

^{** =} Weights depend on machine configuration and working width

4 Preparation of the base

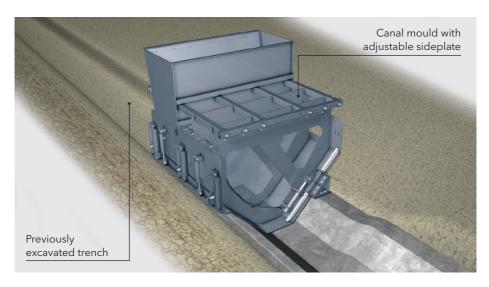
4.1 THE BASE OF CONCRETE PROFILES

Concrete profiles should always be placed on top of a stabilized or compacted base. This may be either stabilized topsoil or a base layer of crushed stone, possibly with an underlying additional frost blanket. Depending on the specification and intended use, however, the base may also be cement-stabilized.

Stabilized soil or a base layer of crushed stone is generally suitable as a base for curb and gutter profiles or narrow slabs, whilst a base layer is the preferred base for concrete safety barriers.

Base of profile	Curb and gutter	Bicycle path / Narrow slab	Concrete safety barrier
Soft, unstabilized subsoil	suitable to a limited extent	suitable to a limited extent	suitable to a limited extent
Stabilized soil	well suitable depending on load	well suitable depending on load	unsuitable
Crushed stone	well suitable depending on load	well suitable depending on load	unsuitable
Asphalt	suitable	suitable	suitable
Cement-stabilized or hydraulically bound base layer	well suitable	well suitable	well suitable

Paving a concrete profile on a base of crushed stone


Paving a concrete safety barrier on an asphalt base

6 Concrete slipforming/Offset moulds

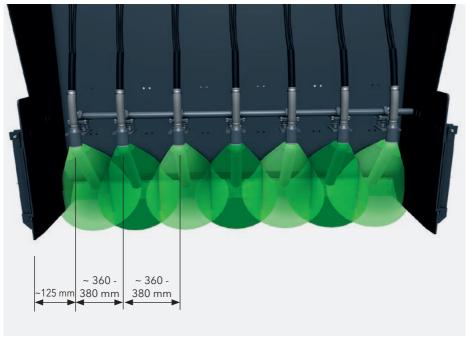
6.5 SPECIAL OFFSET MOULDS

The hydraulically height-adjustable sideplates permit easy adjustment to different depths. The sideplates always precisely adjust to the contour of the trench.

The surroundings of the construction site – like the hillside shown on the left – sometimes prevent the paver from driving right up to the paving site. This special design with modified support frame and chute enables paving of a water canal at a significant offset from the machine. A counterweight should additionally be fitted on the opposite side of the paver.

7 Concrete compaction

7.5 POSITIONING THE VIBRATORS


7.5.2 Slab paving

The following applies for slab paving applications:

- > Position the vibrators in front of the mould.
- > The concrete mix needs to be compacted uniformly and fully across the entire cross-section of the slab. To ensure adequate compaction, adjust the internal vibrators at the same height and to the same direction across the entire paving width.
- Install the vibrators at regular intervals in order to prevent non-compacted areas remaining in the concrete.
- > The first vibrators on the left and right are usually installed at a distance of around 125 mm (5") from the side of the mould. The remaining vibrators should then be installed at intervals ranging from 360 mm to 380 mm (14" to 15").
- > It is vital to maintain a consistently high filling level of concrete in the compaction zone in order to ensure high quality of compaction and evenness.

The vibrators are arranged at regular intervals

Overlapping effective vibrator radii